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Multiple products of B-splines used in CAD system”
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Abstract The function upgrade of computer aided design (CAD) system requested that the multiple product of B-spline functions
should be represented as a linear combination of some suitable (usually higher-degree) B-splines. In this paper, we apply the theory of
spline space and discrete B-splines to deduce the representation of the coefficients of all terms of the linear combination, which can be di-

rectly applied to software coding in system development,

Keywords: computer aided design (CAD), NURBS, Marsden's identity.

Non-uniform rational B-spline (NURBS) was
promulgated as the STEP standard'!) of industrial
product data exchange by the International Organiza-
tion for Standardization (ISO) in 1991, and CAD
software companies all over the world also develop the
surface design system based on the NURBS model?’.
Along with the industrial modernization and function
upgrade of NURBS design system, we find that it is
necessary to represent the multiple product of B-spline
functions as a linear combination of some suitable B-
splines, and this request becomes intensive day by
day. For example, it is needed to integrate the prod-
ucts of three B-splines in computing the barycenter of
the area surrounded by several planar B-spline curves,
and to solve the derivative of the products of B-splines
in computing the minimum distance between the two
B-spline curves. Furthermore, the superposition of
two NURBS curves demands reducing the fractions to
a common denominator. If we can translate the mul-
tiplying of B-spline functions into an additive opera-
tion, then software coding in system development can
be easily done. Moreover, it is necessary, without
exception, to translate the multiplying of B-spline
functions into an additive operation in the analysis of
monotone curvature constraint condition for planar B-
spline curves, in the least-squares approximation of B-
spline curves, and in the offset approximation, the
degree reduction approximation and the polynomial
approximation of NURBS curves. However, till
now, only Marken!? J presented a product formula of
two B-spline functions, and if we recursively apply

Morken’ s formula to solve the product problem of
some B-spline functions, then it is difficult to apply
the result to practice because the numbers of terms of
summation formula will sharply increase and the cor-
responding notations will become very complicated.
Therefore, we must seek for an explicit method
which can directly express the product of n (n=2)
B-spline functions as a linear combination of some
suitable B-splines. It is not a simple and formal gen-
eralization of Mgrken’ s formula, but requires a reli-
gious fine-draw of the transformation of spline’s knot
vector space based on the abstract theory of discrete
B-spline, and even needs the innovation of computa-
tional technique.

In this paper, firstly, we generalize Marsden’ s
identity representing the single power function as a
linear combination of B-spline functions to the case of
the product of multi-power functions; secondly, we
deduce the degree formula and the knot vector formu-
la for the products of n (n==2) B-spline functions;
and finally, we obtain the coefficients formula of the
expression translating the product into a summation,
thereby changing the product of n B-spline functions
into a linear combination of B-splines. The result is of
practical importance in NURBS system development
and engineering application.

1 Preliminaries and notations

Definition 1. Let £ be a positive integer, and
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N, .(x) given by the following de Boor-Cox recur-
rence formula, called the i th B-spline basis of order %
(degree & — 1), defined on a nondecreasing sequence

tz(ti)[2'4]
1, lfI E [ti’ t'+1)’
N; i
1:(2) 0, otherwise,
Nip(z) = 0,1 (x)N; g-1,:(z)

+ (1—C'Ji+1,k(1))Ni+1,k—1,r(I), k>2;
(1)
where
wi,k(x)zwi,k.t(r)
(x—t: )/ (tivi-1—t), Ht:;<tiir-1
0, otherwise '
(2)

Denote by S, , the linear space spanned by these
b order B-spline bases defined on the knot vector .
Obviously, Si,, consists of piecewise polynomials of
degree k — 1. In particular, the polynomial p(x) =
(z — y)*!, where y is a real number, is in the
space S;,4, and its representation is given by Mars-

den’s identity* 3!

(z - y)k_l = Z¢i,k(y)Ni.k,¢(I),

¢'i.k(y) = Sbi.k,t(y) = (tiv1 — y)"'(ti+k—1 - ).
(3)

Similarly, an arbitrary spline function f in space

S;.; can be expressed by the dual basis {4;,;! PREIR

'\i,kf:Ai.k,:f
=3 (- DR (@) £ ()
J(k -, (4)

where a; is an arbitrary real number in [¢;, #;+4 1,
and the right-hand derivative at ¢; and the left-hand
derivative at ¢, ., are all supposed to be finite. If ¢; =
t;+13, we use the convention A; f = f(z;).

Let 7= (t;) be a subsequence of ¢, then S, .~
Si.¢. The B-splines | N; .} in S, . are therefore

linear combinations of the B-splines | N; .}, i.e.
Nj.k,t = Zaj,k.r.t(i)Ni.k.r

The coefficients {a;, 4,¢,¢} above are called discrete B-

[4.6].

splines of order & Equivalently, an arbitrary

spline g = ECij.k,r in S, ; must satisfy

J
g = EdiNi,k.n d; = chaj,k,r,t(i)~ (5)

Discrete B-splines are provided with a recurrence

relation similar to the one in (1) for B-spline
bases!®!
a;, k(1) =a; 5, 4,:(i)
wj b, e (tivpor1) @, 4-1(7)
+ (1= w8, e (ive-1))@je, 2-1(7),
(6)

where w; ;. is given by (2), and @, (i) =
N; 1, ().

2 A generalization of Marsden’s identity for
products of n B-spline functions

The key to establishing the B-spline representa-
tion of the product of n B-spline functions is express-
: . : k-1
ing the polynomial p(x) = H (r—»3;)" by the

i=1
B-spline bases { N; , (| associated with the knot vec-
tor t. Firstly, we give the following definition:

”

Definition 2. Let k= >, k; — (n — 1), here

i=1
ki(izl;z;
Pi=1{pu, p12s Pl_kl_ll is a selection of &2; — 1

-+, n) are positive integers. Suppose

integers from the set I, _; =11,2, -,k — 1}, and de-
note a selection of k£, — 1 integers from the remaining
k — kb, integers (denote the set I,_; \ Py) by P, =
{ D21y P22y s Pz,kz—ﬂ . The rest may be deduced by
analogy. Let P, = | p;1, pj2» =" p,—_kj_l} be a selec-
tion of k, — 1 integers from the set I, -, \ P\ P\
-\ P;_1(j =2,3,-*, n). Here, there are [kjv1+
kot k,— (n — j)] integers contained in the
set I, _,. For a given integer i, we define the corre-
sponding knot vector

P/
t :(“"ti—l’ti’ t,’+p}1,Zi+P}2’-..’
tHP,.kj—:’ Livks Livk+ls =),

i=12,",n, (7)
with the digital subset P,, and define the polynomial
¢ ' ,P;(y)z(ti+p,l_y)(t,-+p —y)"'(ti+p .. -y,

1, 2 2 1

i=L2,,m. (8

Furthermore, based on the selection according to

the above-mentioned principle, we denote by H =
Hkl+k2+-~~+lz"—n,'--.}z vk btk ~(n=j), ok, bR =2

e the

B-1 k-1 |
digital set consisting of all the integer subsets {Py,
s Pjyy, vy Py |, then define its corresponding

1 41
polynomial as

a-1"
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Gick ik (V1 Y2505 V)

2

[ﬁsﬁ P(yj)]

1Pl'Pz""-P,.‘el_[ =1 i,k"tj (9)
- k1+k2+.“+kn_n (kj+l+k]+2+.“+kn_(n_j))“.(kn—l-{—kn_z).
By -1 B —1 ko -1

We also denote by F,(j =1,2, **, n) the poly-
nomial formed by substituting the subscript “k; — 17
for “#;” in the polynomial S[’i,kl,kz.'--.k",t(yl’ Y25ty V)
For example, F;= Sbi.kl—l,kz,-",k",t(yla Y25 s Ya) -

Lemma 1. Suppose that y;, yi, ***, ¥, are all ar-
bitrary real numbers, a;=(k, —1)/(k—~1), Z a, =
1=1

1. Then we have
Sbi,kl-kz."'.k".l(yl’ V257" yn)

= Za]F](t,-M_l - yj). (10)
7=1

Proof. According to Definition 2, the polynomi-
al ik byt (1, ¥2, "5 ¥u) corresponds to the

digital set H, which implies that the digital sets
I,_; and P;(j =1,2, ', n) can be uniquely con-
firmed. Furthermore, »n B-spline functions corre-
sponding to the digital set P; can also be confirmed,
and the associated order of each B-spline function is

k,(;=1,2,-,n), which satisfies & = 2 ki —
=1

J

(n —1). Similar to Definition 2, the digital sets I, -,
and Q;;=1{g;1, q,2, "> %k, -1 t(s=1,2,:+,n) cor-
responding to the polynomial F;(j =1,2, ", n) can
be uniquely confirmed along with the associated B-
spline functions. The order of each B-spline function

is k;(s=1,2,", n), and it satisfies k — 1 = Z kjs
s=1

_(71 _1)7 k_;s
1.

=k, j7s5, s=1,2,,ns k, =k, —

By Definition 2, the procedure of forming the
digital subsets Py, P,, '+, P, can be seen as selecting
digital subsets Q;1, Q;2, ***, Q,, firstly and then in-
serting the element (& ~ 1) into the digital subset
Q,;. From this viewpoint, the digital subsets Q1)
Q,2, ', Q;, are equivalent to the part of the subsets
Py, Py, -+, P, in which the corresponding subset P;
contains the element (£ —1). Therefore, the digital
subsets Py, P;, -, P, can be seen as the sum aggre-

gates of all selected digital subsets Q;, Q)2 **, in s

which correspond to the polynomials F;(j =1,2, -,

n).

According to (8), to each polynomial F,(j =1,
2,-,n), we have
¢ tPj(yj) = (tivg—r — yj)S[’i . 2 (3>

z,k], by

O p(y)=¢ o (y),

ikt ik

s #:_], s = 1)2,"'1 n,

ky+ky+ vt k,~—n (/e,,_1+k,,—2J
( k-1 ok -1
k—l(k11+kj2+"'+kjn'"
TE -1 Ry — 1
(/e],,,_1+kj,,—2
BT S |

Thus, it can be seen that the value of the polynomial

¢i.kl,kz,--~,k",t(y1, Y2, ***y v, ) corresponding to the
polynomial F, (j = 1, 2, -+, n ) equals
ki—1

leF](tiJrk—l—y])-

From all the above analyses, we know that Lem-
ma 1 is true.

Hence, the same arguments as those in Lemma 1
can reach the following lemma.

Lemma 2. Suppose yi, 2, ***, y, and a; are the
same as in Lemma 1. Then

Gictk bk (V1 Y2 )

= a1 - ). (11)

Theorem 1. Suppose yi, v3, =**, y, are all arbi-
trary real numbers. Then we can obtain the general-
ization form of Marsden’s identity;

H(I _ yi)k'*l
= 2¢i,kl.kz,~--,k",t(y1’ Y25 'y yn)Ni,lz,t(I)-
(12)

Proof. Perform an induction on natural number
k. Supposing first that £ =1, i.e. by =k, = =¢,

b e

e e

Lt L RN

BT A
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=1, we have ¢ p b,k 0 (¥1, 32, =5 32) = 1.
Suppose next that the result holds for splines of order
kE — 1, then we must prove that it also holds for
splines of order 2. Denote by f{(z) the right-hand
side of (12). Apply the usual recurrence relation (1)
to B-spline bases, and then rearranging the order of
the summation, we have

f(I): Z [wi,k(1)</1i.k

+ (1—wi,k(l))‘/’i—1.k1.k2,~--,lz",t(y1;y2’ )]
'Ni,k—l.t(I)-

kz,"',k".t(yhyZ’ “"yn)

1"

From Lemma 1 and Lemma 2, substituting {10)
and (11) into the above equation, and arranging the
equation by simple algebraic operation, we can obtain

f(x) = 2 Za,(l = %) FN; po1,e(2).

Hence, by using the induction hypothesis and

the identity Z a; =1, we have

1=1

f(lz) = H(I — )b

3 Explicit representation of the products of
n B-spline functions

Let fi= D3N 2,e (fi€S,5,i=1,2,, 1)
4 ' vt o

be n given B-spline functions, where k; and t; are its
corresponding order and knot vector, respectively. If
we want to get the explicit representation of the prod-
uct of the B-spline functions, the first task is to con-
struct the spline space S; , which contains the prod-
uct. Therefore, we give the following two lemmas to
present the order and the knot vector of the space
S;,s» respectively.

Lemma 3. Suppose there are n B-spline func-
tions being the same as the above, then the order of

the product f= H f; is at least equal to
i=1

n

E= Dk —(n-1). (13)

i=1

Proof. Perform an induction on natural number

> (1

=1
1P Py, PIE]]

1

n . Suppose first that » =2, and the conclusion is ob-
(31, Suppose next that the result holds for the
product F of n — 1 B-spline functions. Since f =
Ff,, from the former conclusion, we can know that

vious

it also holds for .

Definition 3. Let L € {1,2, -, n| be an integer
and n be a positive integer. Suppose P; = { p1, p,
«+, p;1 is a selection of j integers from the set I} =
{1,2,+--, L'}, and denote the set consisting of the re-
maining L —j integers by Qp ;, thatis, QL ;=1
\ P, j<L, j=1,2,-, L.

Applying the result of Ref. [3] and imitating
the proof of Lemma 3, it is easy to get Lemma 4.

Lemma 4. Suppose that the n B-spline functions
are the same as that in l.emma 3, and the knot y oc-
curs with the multiplicity m;(m;>0,:=1,2, ", n)
in the knot vector ;. Then the multiplicity m of the
knot y in the knot vector ¢ satisfies

m=m =max( Z k,‘*‘le—(n-l)).
EF

(14)

For the case that some of the multiplicities m; of
the knot y in the knot vector 7; equal zero, from Eq.
(14) and Ref. [3], we can establish the required in-
equality; and if all of the multiplicities m; (i =1, 2,
-+, n) equal zero, then the multiplicities of the knot
y in the knot vector ¢ must be zero.

The following theorem shows how the B-spline
coefficients of the product are related to the B-spline
coefficients of each factor.

Theorem 2. Suppose the n B-spline functions are

n

the same as that in Lemma 3. Set & = z k,—(n—

=1
1) and construct the knot vector ¢ as outlined above.

Then f = H fi € S;.;, and there exist coefficients

i=1

d; such that f = Zd,-N,-,k,,(z). Especially, for a

P )
given i, the knot vector ¢ *(s=1,2, -+, n) defined

P ..
by (7) satisfies 7,=¢ *, and d; is given by

Sea a0
B s GoksTE’
f

e P -

k-1

(ks+l+k$+2+-~~+kn—(n_s)) . (kn—l-l—kn_z).

(15)

kovp — 1 ky1 -1
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Proof. By the generalized Marsden’s identity (12), we have

. k-1
1 (z-3p" = Z¢i,kl.kz.---.k",t(y15y2’ “ ¥a) Nijw, o (2)
1=1 !

SO (a0 Neto)

PP, P ie]]
(ks+1 + ks+2 + ot kn - (n - S)) ‘“( kn—l + kﬂ - 2)
k5+1 -1 kn—l -1

kit ky+ otk —n
By -1

(16)

Since fi(z)=(x —y )k)_l(jzl 2,,n), for 1,2,++, n). Hence, the order of the polynomial f=
7 7 9 & ) s i

any real number a; in [4;, 2;+4], we have 11 f, whose degree is not more than & — 1, is

k—-1-r -
(y, = a,)™ ’ ! n
- (- 1)’*,*1", Mf(r’)(a--) k= E k;—(n —1). Thus, according to “the polyno-
B (k] - D! s y=1 .
ro=0.1,.k —1 mial theorem”!”) and “the Taylor expansions of n-vari-
J » T Ry .

»[8] . ed
Note that f;(x) is a polynomial of degree £, ~1(j = able™, after rearranging, Eq. (16) can be changed as

n

Xz SIERIEAIEANED

ﬁf' _ P Plell ‘ (17)
P ki+ky+ - +k, —n ._(ks+1+ks+2+---+k,,—(n—s))m(k,,‘1+k,,—2)
By — 1 By — 1 B, -1
In general, f,(x) is a k; — 1 degree piecewise nonempty subinterval (¢,, £, {) contained in the in-
polynomial in the spline space S, -t (G=1,2,,mn). terval [ ¢, ¢; 4+, ]. On this interval, the polynomials 5
Because of the way in which th;: knot vector t was and g,(j =1,2,*, n) are equivalent to each other.

=1

constructed we have f(z) = H filz) €S, Then ng € S;.,, and its B-spline coefficients can
j=1

7= . . . .
From the uniqueness of the expression of the B-spline be obtained by (17). Comparing the B-spline coeffi-
function, we can affirm that there exist unique coeffi- cients of this polynomial with that of (17), and re-
cients d; such that f(z) = sz (x). Espe membering that the B-splines are linearly indepen-
i = NGk, . -

dent, we have
cially, fix an integer i and consider an arbitrary

Z H" Ie t](gj

P, Py, P ie]] 1=
d; = (k1+k2+---+k,, koor + kg + -+ k, — (n —s)) (k,,_1+k,,—2
By -1 kooy — 1 ok, -1
Note that the above expression holds for all nonempty subintervals (z,, ¢,+) in [ t;»t;+,], we have

E HAzle t)(f:’

d, = T (18)
"‘(}e1+k2+---+k,,— (k5+1+k3+2+ +k,,—(n—s)) (k,,_1+k,,—2)'
B 1 By -1 kyoy—1
In fact, Eq. (18) is just a disguised form of (15). A 'y ,s(fs) (s =2,3, -, n). Applying the above

According to (5), suppose 11§tP‘, then the number conclusion to (18) yields (15).
Ay A (f1) is just the ith B-spline coefficient of the
R,

p [t remains needing to prove that for a fixed inte-
. . . .
B-spline function f on the refined knot vector ¢ ', so

P
gerz, t‘(s=1,2,, n) defined in (7) satisfy the
A, A1) = Z CJI a ., 7, (i), and similarly y
1, 1’ i 1 le l'Tl't

. P .
relation 7,5 ¢ *. Let ¥ be a knot in the knot vector

SRR . g I g e
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7,, and let mq, my, -, Mlus Ty Mp 5 Mp ,**"s Mp be
2 n

the corresponding multiplicity in the knot vector 7,

P,

P P .
Ty, " T byt Nt 5, t ", respectively. We must

prove that m<<mp (s=1,2,-,n).

Supposing first that m, = 0, recalling the con-

P
struction of £ * defined by (7), we see that m, =0,

namely, m,<mp .
If m,>0, there are three cases to be considered:

Casel. If y<t;,yor y>t;,,-1, recalling the

. P . .
construction of ¢ * defined by (7), we can find that
mp = m, and by Lemma 4, we have m =m,.

s

CaseZ. If t,-<t,-+1<y<t,-+k_1<t,v+k, we

"
have Z mp = m. The worst case then occurs when
s=1 s
(m — mp ) reaches the maximum, in other words,
‘ s—1 n
when max(m ~ mp ) = E ki + E k,—(n—-1).
s i=1 y=s+1

Therefore, we have

mps>m— [il}k] + j ki —(n - 1)].

j=1 j=s+1

By (14), the set I, given by Definition 3 must in-

clude the selection condition of P,_; = {1, -=-, s — 1,
s+1,,nl, Q =1s!, so we have mp =2 m,.

Case 3. If y equals the knots both within and
Stiver(e. g y=t,
=t¢;+1), a combination of the above two arguments

outside the range #;.1, #;+2, *

can establish the required inequality.
The proof of Theorem 2 is completed.

References

1 Vergeest S. M. CAD surface data exchange using STEP. Comput-
er Aided Design, 1991, 23(4): 269—281.

2 Piegl L. and Tiller W. The NURBS Book. Berlin; Springer,
1995.

3 Morken K. Some identities for products and degree raising of
splines. Constructive Approximation, 1991, 7(2): 195—208.

4 WangG. ]J., Wang G. Z. and Zheng J. M. Computer Aided Geo-
metric Design (in Chinese), 1st ed. Beijing: China Higher Educa-
tion Press; Heidelberg: Springer-Verlag, 2001.

5 Marsden M. ]. An identity for spline functions with applications to
variation-diminishing spline approximation. Journal of Approxima-
tion Theory, 1970, 3(1): 7—49.

6 Cohen E., Lyche T. and Riesenfeld R. Discrete B-splines and sub-
division techniques in computer aided geometric design and comput-
er graphics. Computer Graphics & Image Processing, 1980,
14(2). 87—111.

7 Richard A. B. Introductory Combinatorics. New York: Elsevier
North-Holland, 1977, 63—65.

8 Lang S. Analysis I. Reading: Addision-Wesley Publishing Compa-
ny, 1978, 287—289.



